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Abstract

We provide probabilistic proofs for a number of real inversion formulas

for the Laplace and for the Stieltjes transform.
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1. Introduction

Assume p to be a bounded measure on +. Let f be a kernel changing p

into the transformed function

(11 g(t) f f(t,u)dp(u).

0

In the literature dealing with operational calculus the recovery of P-

from g is mostly accomplished by complex inversion formulas. One knows that

for a variety of integral transforms (i.e. Laplace, Stieltjes), real inver-

sion formulas are available [6,10,12]. These formulas can also be obtained

as applications of classical results from probability theory such as the

weak law of large numbers and the central limit theorem.

To abbreviate the writing we put for 0 < Yl < y2 < 0-

1

(2) P{y 1;Y21 = 2j{Y1 } I + P(YlY 2 ) ?'Y 2 1

')TIC I %"i Avatl.b--:.--
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2. Inversions using lattice variables

Let X be a non-negative lattice variable with mean u > 0 and finite

variance a > 0. Take Xl,X 2,... a sample from X. Define the sum

Sn(u )  X + X +...+X , n - 1
n 1 2 n

and put

d n (u,t) = P{Sn (U) [nt]).

P
By the weak law of large numbers we know that S (u)/n - u while [ntl/n t.n

Hence d n(u,t) + 0 if t < u, while dn (u,t) 1 if t > u. For u = t note that

{ [nu] - nu}/r - 0 while

(uu) S (u) -nu [nu] -nu} 1

dU,, , =p{ n 1 _ ._.-
n a ofr 2 ---,

by the central limit theorem and the uniform convergence to the normal law

[7, p. 139]. Hence

0 t < u

d (u,t) t~ t u
n 12

1 t >u

By Lebesgue's theorem and (2) for 0 < y < Y < o

(3) P{yl;Y 2} = lim f{dn(uy 2  - dn(U,y )}d(u)
n- , 0

is a potential inversion formula.

Moreover by a local limit theorem [4, p. 225] or [1, p. 233]

,, . ".



2.2

__ 0 t u
(4) h (u,t) :o/2im P{S (u) [nt]}

n n t=u

By proper approximation (4) will suggest a function of the form

e (v) = chn(v,l) -

v

for a constant c; this implies an inversion formula for the point mass at

y, i.e.

(5) {y} = lim f e ( !)dpy).
n "  n y

Before turning to examples let us introduce the abbreviation

(0 < Yl < Y2< )

(6) An {m: [nY + 1i m [ny 2 ]}.

Example 2.1. Poisson distribution and Laplace transform.

Put for the Laplace transform of p,

00

(7) g(t) := f e- tudp(u).
0

Then for m E JN

(8 (ne tu n
(8) (-d)gn(t) f e-tundp(u).

Let X be Poisson with mean u so that



[ n] fu (nu)m
d n(u,t)= e e !

M=O

By (2) and (3) we get

ply y} 2 1 r li f e-fl M d~i(u)
n- incA 0

nn

= i (-nu)m (i)n).

n-K mEA ml g ()

This inversion formula can be found in [12, p. 295]. It can be fruitfully

used in giving a probabilistic proof of Bernstein's theorem on completely

monotone functions; see [2, p. 191].

For the point mass we get from (4)

(u)[nt]
h n(u, t) = 2rrnu eu [nt]!

Stirling's formula easily yields c =1 and

en (v) =exp -n~v I log v}.

Collecting results we get

Theorem 2.1. Let pi be a bounded measure and g(t) its Laplace transform.

Then for 0 < y 1 < yr2 < OD

m
= Itn (-nu) (in)illmy g y2M (n);
n-xz incAn

and for 0 < y <

. . . .. . . . . . . . . . . . . . . ... . .



2.4

p{yl = lim(- ) g n
g fn l.

The latter formula occurs also in [12, p. 2981.

Example 2.2. Pascal distribution and Stieltjes transform.

In the sequel we also deal with the (generalized) Stieltjes transform.
00

(9) p (t) f (u + t)-Pd(u)
p0

where p > 0.

In evaluating successive derivatives of p the next lemma will be

useful.

Lemma 2.2. For a, c E N, -p )N0 , u > 0, t > 0

(10) DatbD C(u + t)-p 1  r(p + a + c)(l) a+ctb(u + t)-p-a-c F(_a,_b,_puac+l.U+t

r(p) 't

in particular

(11) Da{tp+a+c-lDC (u + t)-p} = (p + a + c)(l)ctP+c-lua(u + t) -p-a-c
r(p)

Proof. Apply Leibniz's rule for differentiation of products; and then, for

cc E N

.F(-a,-g,-y;x) = fl ID m
IIYm(-x)

mm

To prove (11), note that F(-a,y,y;x) = (1 - x) if (I E N by [5, p. 10401.4

Let X be geometric with mean u. Then

b,"i-" i .i-.i--. . -"---".. .-.-- "....".-....... .'.......-.-..........".....""--..".



2.5

(u,t) =[t

rn=O i

where u =EX - or p =(u + 1)-'. For the point mass we note that
p

h n(u,t) =OV'271n( ) ~
(l+u)

where m =[nt]. Stirling's formula again applies to yield

(12) e n(v) 2~2

Theorem 2.3. Let P~ be a bounded measure and P(t) its (ordinary) Stieltjes

transform. Then for 0 < y1 < y2 < 00

=~~ ~ 2r r{nim~1(D nI

n

-* r(n) M ~
n mDEA

n

for 0 < y < o

2nn

2 ynn-If un
ply} mEA D0-D ( )}

n-n

Putof a ro (3 a,= nd the 1 curn chic -f d, pe finnd1) ofndte is

00 n
n .. . . . . .

P~~~~y~ ;y li f p.



2.6

formula. To get the second, put a =n + m -1, b =n, c 0, p =1 in (10)

and -ecall that F(a,b,c;x) =F(b,a,c;x).

For the point mass we get from (5) and (12)

00 n
1Ify}li±m(4y~2 diJ(u).

n- 0 (u+y)2

So we take a =n, b =2n - 1, c = n - 1 and p =1 in (11).

Example 2.3. Binomial distribution and Stieltjes transform.

Let X be Bernioulli on 0 and 1 so that

Then

[nt]nn-
Pis (v) [ntj} (Z)v (1 -V)

suggests a potential inversion. However we should adapt it so that V EIR

rather thanv E [0.11. So define

d n(u,t) In [n1+t)] n )u n-Z (+ u)-n.

Theorem 2.4. Let p be a bounded measure and 0 (t) its (ordinary) Stieltjes

transform. Then for 0 < y1 < y2 < CO

1 2



2.7

= rnI n n-Z tn-i L-i -

f~ y l4 m D -D q) (t

n-D &EB
m

where~~~~ B n- {ZLn-1f-.e jL.}

m 1

T1he proof is basically the same as that of the previous theorem.



3. Inversions using also densities

Let Xl,X 2 .... be a sequence of independent non-negative random variables

with common distribution F, mean I and finite variance. Let also YIY2 ....

be such a sequence but with distribution G, and independent of the sequence
i {x. }.

I

Define S X1 +... + X and T = Y1 +. .+ Y and look at

d (u) = P{S /T < ul;n n n '

by combining a weak law and the central limit theorem, one easily finds that

* 0 U <1

d (u) - f F(n)(ut)dGtn)(t) u = I
n 0

0 u>l

where t(n(G(n)) is the n-fold convolution of F(G) with itself. The particular

case where Y, = 1 is important and yields d (u) = F(n ) (nu).

The potential inversion formula reads now

o

(13) l{yl;Y2} = lim f{d n( u- d n( )}dp(u)
n- 0 2

while a point mass formula can be derived by using

e (v) Cd ()

it d is absolutely continuous.
n

*Lxample 3.1. Exponential distribution and Laplace transform.

Here Y. = 1 and X. has an exponential density with mean 1. Hence
1 i

. . .-, , -... .. . ..... . .. . ..



3.2

1 l n-i
(14) d (u) r (n e 'v dv

0

and so we have

Theorem 3.1. Let p. be a bounded measure and g(t) its Laplace transform. Then

for 0 < y 1 < y 2 <

n )

(15) ply ;y2  lim Y2 (-n )n
n-Koy 1  P(n) tn+l

Proof. From (13) and (14) we see that

p4ly 1, ;y lrn 7d~i (u) Juy -1 In e -Vv nldv
n-- 0 nuy2

Y n 00 n
ii f2 (n) nt -'f unlpu

n-o lt 0

by Fubini's theorem.

The point mass formula coincides with that of th. 2.1.

The appealing form of (15) suggests that if the sequence

n r(n) t n+l

converges a.e. on R + and is bounded by an L -function then pi is absolutely

continuous and its derivative is given by the inversion

(16) d- = 1 (n) n gfl)

dt n)-wr(n) t n~l

.. '. . . ... . . -

-A.L..



3.3

The inversion formula (16) is well known [6,12]; its probabilistic proof due

to Feller [3] has been the inspiring source for the current paper. Formula (16)

has been used by Jagerman [9] to perform numerical inversion of the Laplace

transform. For other applications see a paper by Vinogradov [13].

Example 3.2. Exponential distributions and Stieltjes transform.

Let F(x) = G(x) - 1 - e- x  then dn (u) turns out to be a beta distribution

on R i.e.

u n-l
d (u) -(2n) f vn - " dv.

d (n) 0 (l+v) 2n

Theorem 3.2. Let p be a bounded measure and pi(t) be its (ordinary) Stieltjes

transform. Then for 0 < y 1 < y2 < o-

li{yl = lim I f2 Dn{t2nl (-D)nl l(t)}dt
n- ' F2 (n) y-

lim (-l)n f2 tn- ID2n- l{tn(t)}dt;n-  2 (n ) )yIi-

for 0 < y <

= lm ( 4 )n D2n-l{yn,1 (y)}

n- 1'2n)

Proof. We easily get

{rn lia n f2 tn-ldtf un d(u)

n- F (n) yl 0 (u+t)2n

. ,.

Ii:AIiI ,%.: .



3.4

We get the two formulas by applying lemma 2.2 with the two choices

a = n, b = 2n 1, c = n - 1, p = 1 in (11)

a = 2n - 1, b n, c = 0, p 1 in (10)

as in the proof of th. 2.3.

For the point mass we get e as in (12); the resulting formula comes from
n

the second choice above. .

For the above formulas see [12, p. 350). For applications, see [8].

The last example shows how an almost trivial probabilistic argument widens "

the applicability of the previous examples.

Example 3.3. Exponential distributions and generalized Stieltjes transforms.

Return to the previous example but look at S and T instead of S
n+b n+a+p n

and T where a,b E 2Z are fixed. Then
n

lim P{r < u} = lim P{ < u}.
T Tn-KO n+a+p n-?°  n

Hence we have another candidate for d, i.e.

d (u) F(2n+a+b+p) v dv.
n r(n+a+ r (n+b) 0 (l+V) 2n+a+b+p

By the usual procedure we obtain also

b-a-p

e V 2 2 V 12n+a+b+pen(v) = v 2 {+v

If we now go through the same routine as in example 3.2 with a replaced

by n + b and c by n + a we obtain the following results of E.R. Love and

A. Byrne [10,11]. We note that we have to restrict p to IN in view of the

0

5 . 4 .. S .S * ~ S~ fl S S .

* . * . - . . . . . . . S S S -. S *m



3.5

* probabilistic set up.

Theorem 3.3. Let P be a bounded measure; let 4 (t) be its generalized Stieltjes

- transform. Let a,bE M. Then for 0 < yI < y2 < CO

'i~dyy} =lim 2 nb 2n+a+ n~(tj dty;Y2 lim r(n+a+p) (n+b) f Dn It ab+pl(D)n p(t dt
n-*w Y l

for 0 < y <

22n+a+b+ )() yD n+b y2n+a+b+p-I n+a

n{y} (2n +a+b+p) 
(-D) p (y ) }

Note that by using different random variables one can get a variety of real

inversion formulas for the same Stieltjes transform . Needless to point

out how th. 3.2 follows from the last result.

.

.7



4. Remarks.

1. The main drawback of the method used in this paper is that the relevant

integral transform has to be recovered from a potential inversion formula.

2. The main virtue of the paper lies in singling out the relevance of the

asymptotic behavior of the sequence d for n ; probabilistic arguments oftenn "

provide this behavior immediately.,

3. There exist additive counterparts for the formula (13). For if

dO v<O
dn(v) tI v = 0

1 v > 0

where v E IR, then a potential inversion formula for a transform on IR is

P{Yl;y lim f{d(u - Y1) - d(U - Y2}di(u).

n--v

The best known example is d (v) = f sin u du leading to the inversion

formula for the Fourier transform

vn

P{y 1 ;y I lim 2dx 1 n
n- °Yi -n

where O(z) feizud)j(u). 1 2]R 1 rv -12f

Another example is dn (v) 2¢- f e dx leading to a real inversion

formula for the Gauss-Weierstrasz transform [6]

X -t2du)i

w (t) = f exp - -(u t) di(u).

2 71.. .... .........
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